
Chapter 4

Series

Divergent series are the devil, and it is a shame to base on them
any demonstration whatsoever. (Niels Henrik Abel, 1826)

This series is divergent, therefore we may be able to do something
with it. (Oliver Heaviside, quoted by Kline)

In this chapter, we apply our results for sequences to series, or infinite sums.
The convergence and sum of an infinite series is defined in terms of its sequence of
finite partial sums.

4.1. Convergence of series

A finite sum of real numbers is well-defined by the algebraic properties of R, but in
order to make sense of an infinite series, we need to consider its convergence. We
say that a series converges if its sequence of partial sums converges, and in that
case we define the sum of the series to be the limit of its partial sums.

Definition 4.1. Let (an) be a sequence of real numbers. The series

∞∑
n=1

an

converges to a sum S ∈ R if the sequence (Sn) of partial sums

Sn =

n∑
k=1

ak

converges to S as n→∞. Otherwise, the series diverges.

If a series converges to S, we write

S =

∞∑
n=1

an.
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60 4. Series

We also say a series diverges to ±∞ if its sequence of partial sums does. As for
sequences, we may start a series at other values of n than n = 1 without changing
its convergence properties. It is sometimes convenient to omit the limits on a series
when they aren’t important, and write it as

∑
an.

Example 4.2. If |a| < 1, then the geometric series with ratio a converges and its
sum is

∞∑
n=0

an =
1

1− a
.

This series is simple enough that we can compute its partial sums explicitly,

Sn =

n∑
k=0

ak =
1− an+1

1− a
.

As shown in Proposition 3.31, if |a| < 1, then an → 0 as n → ∞, so that Sn →
1/(1− a), which proves the result.

The geometric series diverges to ∞ if a ≥ 1, and diverges in an oscillatory
fashion if a ≤ −1. The following examples consider the cases a = ±1 in more
detail.

Example 4.3. The series
∞∑
n=1

1 = 1 + 1 + 1 + . . .

diverges to ∞, since its nth partial sum is Sn = n.

Example 4.4. The series
∞∑
n=1

(−1)n+1 = 1− 1 + 1− 1 + . . .

diverges, since its partial sums

Sn =

{
1 if n is odd,

0 if n is even,

oscillate between 0 and 1.

This series illustrates the dangers of blindly applying algebraic rules for finite
sums to series. For example, one might argue that

S = (1− 1) + (1− 1) + (1− 1) + · · · = 0 + 0 + 0 + · · · = 0,

or that

S = 1 + (−1 + 1) + (−1 + 1) + · · · = 1 + 0 + 0 + · · · = 1,

or that

1− S = 1− (1− 1 + 1− 1 + . . . ) = 1− 1 + 1− 1 + 1− · · · = S,

so 2S = 1 or S = 1/2.

The Italian mathematician and priest Luigi Grandi (1710) suggested that these
results were evidence in favor of the existence of God, since they showed that it
was possible to create something out of nothing.
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Telescoping series of the form

∞∑
n=1

(an − an+1)

are another class of series whose partial sums

Sn = a1 − an+1

can be computed explicitly and then used to study their convergence. We give one
example.

Example 4.5. The series

∞∑
n=1

1

n(n+ 1)
=

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+

1

4 · 5
+ . . .

converges to 1. To show this, we observe that

1

n(n+ 1)
=

1

n
− 1

n+ 1
,

so
n∑
k=1

1

k(k + 1)
=

n∑
k=1

(
1

k
− 1

k + 1

)
=

1

1
− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
+ · · ·+ 1

n
− 1

n+ 1

= 1− 1

n+ 1
,

and it follows that
∞∑
k=1

1

k(k + 1)
= 1.

A condition for the convergence of series with positive terms follows immedi-
ately from the condition for the convergence of monotone sequences.

Proposition 4.6. A series
∑
an with positive terms an ≥ 0 converges if and only

if its partial sums
n∑
k=1

ak ≤M

are bounded from above, otherwise it diverges to ∞.

Proof. The partial sums Sn =
∑n
k=1 ak of such a series form a monotone increasing

sequence, and the result follows immediately from Theorem 3.29 �

Although we have only defined sums of convergent series, divergent series are
not necessarily meaningless. For example, the Cesàro sum C of a series

∑
an is

defined by

C = lim
n→∞

1

n

n∑
k=1

Sn, Sn = a1 + a2 + · · ·+ an.
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That is, we average the first n partial sums the series, and let n → ∞. One can
prove that if a series converges to S, then its Cesàro sum exists and is equal to S,
but a series may be Cesàro summable even if it is divergent.

Example 4.7. For the series
∑

(−1)n+1 in Example 4.4, we find that

1

n

n∑
k=1

Sk =

{
1/2 + 1/(2n) if n is odd,

1/2 if n is even,

since the Sn’s alternate between 0 and 1. It follows the Cesàro sum of the series is
C = 1/2. This is, in fact, what Grandi believed to be the “true” sum of the series.

Cesàro summation is important in the theory of Fourier series. There are also
many other ways to sum a divergent series or assign a meaning to it (for example,
as an asymptotic series), but we won’t discuss them further here.

4.2. The Cauchy condition

The following Cauchy condition for the convergence of series is an immediate con-
sequence of the Cauchy condition for the sequence of partial sums.

Theorem 4.8 (Cauchy condition). The series
∞∑
n=1

an

converges if and only for every ε > 0 there exists N ∈ N such that∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ = |am+1 + am+2 + · · ·+ an| < ε for all n > m > N.

Proof. The series converges if and only if the sequence (Sn) of partial sums is
Cauchy, meaning that for every ε > 0 there exists N such that

|Sn − Sm| =

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ < ε for all n > m > N,

which proves the result. �

A special case of this theorem is a necessary condition for the convergence of
a series, namely that its terms approach zero. This condition is the first thing to
check when considering whether or not a given series converges.

Theorem 4.9. If the series
∞∑
n=1

an

converges, then
lim
n→∞

an = 0.

Proof. If the series converges, then it is Cauchy. Taking m = n− 1 in the Cauchy
condition in Theorem 4.8, we find that for every ε > 0 there exists N ∈ N such that
|an| < ε for all n > N , which proves that an → 0 as n→∞. �



4.2. The Cauchy condition 63

Example 4.10. The geometric series
∑
an converges if |a| < 1 and in that case

an → 0 as n→∞. If |a| ≥ 1, then an 6→ 0 as n→∞, which implies that the series
diverges.

The condition that the terms of a series approach zero is not, however, sufficient
to imply convergence. The following series is a fundamental example.

Example 4.11. The harmonic series

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ . . .

diverges, even though 1/n → 0 as n → ∞. To see this, we collect the terms in
successive groups of powers of two,

∞∑
n=1

1

n
= 1 +

1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+

(
1

9
+

1

10
+ · · ·+ 1

16

)
+ . . .

> 1 +
1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+

(
1

16
+

1

16
+ · · ·+ 1

16

)
+ . . .

> 1 +
1

2
+

1

2
+

1

2
+

1

2
+ . . . .

In general, for every n ≥ 1, we have

2n+1∑
k=1

1

k
= 1 +

1

2
+

n∑
j=1

2j+1∑
k=2j+1

1

k

> 1 +
1

2
+

n∑
j=1

2j+1∑
k=2j+1

1

2j+1

> 1 +
1

2
+

n∑
j=1

1

2

>
n

2
+

3

2
,

so the series diverges. We can similarly obtain an upper bound for the partial sums,

2n+1∑
k=1

1

k
< 1 +

1

2
+

n∑
j=1

2j+1∑
k=2j+1

1

2j
< n+

3

2
.

These inequalities are rather crude, but they show that the series diverges at a
logarithmic rate, since the sum of 2n terms is of the order n. This rate of divergence
is very slow. It takes 12367 terms for the partial sums of harmonic series to exceed
10, and more than 1.5× 1043 terms for the partial sums to exceed 100.

A more refined argument, using integration, shows that

lim
n→∞

[
n∑
k=1

1

k
− log n

]
= γ

where γ ≈ 0.5772 is the Euler constant. (See Example 12.45.)
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4.3. Absolutely convergent series

There is an important distinction between absolutely and conditionally convergent
series.

Definition 4.12. The series
∞∑
n=1

an

converges absolutely if
∞∑
n=1

|an| converges,

and converges conditionally if
∞∑
n=1

an converges, but

∞∑
n=1

|an| diverges.

We will show in Proposition 4.17 below that every absolutely convergent series
converges. For series with positive terms, there is no difference between convergence
and absolute convergence. Also note from Proposition 4.6 that

∑
an converges

absolutely if and only if the partial sums
∑n
k=1 |ak| are bounded from above.

Example 4.13. The geometric series
∑
an is absolutely convergent if |a| < 1.

Example 4.14. The alternating harmonic series,
∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ . . .

is not absolutely convergent since, as shown in Example 4.11, the harmonic series
diverges. It follows from Theorem 4.30 below that the alternating harmonic series
converges, so it is a conditionally convergent series. Its convergence is made possible
by the cancelation between terms of opposite signs.

As we show next, the convergence of an absolutely convergent series follows
from the Cauchy condition. Moreover, the series of positive and negative terms
in an absolutely convergent series converge separately. First, we introduce some
convenient notation.

Definition 4.15. The positive and negative parts of a real number a ∈ R are given
by

a+ =

{
a if a > 0,

0 if a ≤ 0,
a− =

{
0 if a ≥ 0,

|a| if a < 0.

It follows, in particular, that

0 ≤ a+, a− ≤ |a|, a = a+ − a−, |a| = a+ + a−.

We may then split a series of real numbers into its positive and negative parts.

Example 4.16. Consider the alternating harmonic series
∞∑
n=1

an = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . .
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Its positive and negative parts are given by

∞∑
n=1

a+n = 1 + 0 +
1

3
+ 0 +

1

5
+ 0 + . . . ,

∞∑
n=1

a−n = 0 +
1

2
+ 0 +

1

4
+ 0 +

1

6
+ . . . .

Both of these series diverge to infinity, since the harmonic series diverges and

∞∑
n=1

a+n >

∞∑
n=1

a−n =
1

2

∞∑
n=1

1

n
.

Proposition 4.17. An absolutely convergent series converges. Moreover,

∞∑
n=1

an

converges absolutely if and only if the series

∞∑
n=1

a+n ,

∞∑
n=1

a−n

of positive and negative terms both converge. Furthermore, in that case

∞∑
n=1

an =

∞∑
n=1

a+n −
∞∑
n=1

a−n ,

∞∑
n=1

|an| =
∞∑
n=1

a+n +

∞∑
n=1

a−n .

Proof. If
∑
an is absolutely convergent, then

∑
|an| is convergent, so it satisfies

the Cauchy condition. Since ∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ ≤
n∑

k=m+1

|ak|,

the series
∑
an also satisfies the Cauchy condition, and therefore it converges.

For the second part, note that

0 ≤
n∑

k=m+1

|ak| =
n∑

k=m+1

a+k +

n∑
k=m+1

a−k ,

0 ≤
n∑

k=m+1

a+k ≤
n∑

k=m+1

|ak|,

0 ≤
n∑

k=m+1

a−k ≤
n∑

k=m+1

|ak|,

which shows that
∑
|an| is Cauchy if and only if both

∑
a+n ,

∑
a−n are Cauchy.

It follows that
∑
|an| converges if and only if both

∑
a+n ,

∑
a−n converge. In that
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case, we have
∞∑
n=1

an = lim
n→∞

n∑
k=1

ak

= lim
n→∞

(
n∑
k=1

a+k −
n∑
k=1

a−k

)

= lim
n→∞

n∑
k=1

a+k − lim
n→∞

n∑
k=1

a−k

=

∞∑
n=1

a+n −
∞∑
n=1

a−n ,

and similarly for
∑
|an|, which proves the proposition. �

It is worth noting that this result depends crucially on the completeness of R.

Example 4.18. Suppose that a+n , a
−
n ∈ Q+ are positive rational numbers such that

∞∑
n=1

a+n =
√

2,

∞∑
n=1

a−n = 2−
√

2,

and let an = a+n − a−n . Then

∞∑
n=1

an =

∞∑
n=1

a+n −
∞∑
n=1

a−n = 2
√

2− 2 /∈ Q,

∞∑
n=1

|an| =
∞∑
n=1

a+n +

∞∑
n=1

a−n = 2 ∈ Q.

Thus, the series converges absolutely in Q, but it doesn’t converge in Q.

4.4. The comparison test

One of the most useful ways of showing that a series is absolutely convergent is to
compare it with a simpler series whose convergence is already known.

Theorem 4.19 (Comparison test). Suppose that bn ≥ 0 and

∞∑
n=1

bn

converges. If |an| ≤ bn, then
∞∑
n=1

an

converges absolutely.

Proof. Since
∑
bn converges it satisfies the Cauchy condition, and since

n∑
k=m+1

|ak| ≤
n∑

k=m+1

bk
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the series
∑
|an| also satisfies the Cauchy condition. Therefore

∑
an converges

absolutely. �

Example 4.20. The series

∞∑
n=1

1

n2
= 1 +

1

22
+

1

32
+

1

42
+ . . . .

converges by comparison with the telescoping series in Example 4.5. We have

∞∑
n=1

1

n2
= 1 +

∞∑
n=1

1

(n+ 1)2

and

0 ≤ 1

(n+ 1)2
<

1

n(n+ 1)
.

We also get the explicit upper bound

∞∑
n=1

1

n2
< 1 +

∞∑
n=1

1

n(n+ 1)
= 2.

In fact, the sum is
∞∑
n=1

1

n2
=
π2

6
.

Mengoli (1644) posed the problem of finding this sum, which was solved by Euler
(1735). The evaluation of the sum is known as the Basel problem, perhaps after
Euler’s birthplace in Switzerland.

Example 4.21. The series in Example 4.20 is a special case of the following series,
called the p-series,

∞∑
n=1

1

np
,

where 0 < p < ∞. It follows by comparison with the harmonic series in Exam-
ple 4.11 that the p-series diverges for p ≤ 1. (If it converged for some p ≤ 1, then
the harmonic series would also converge.) On the other hand, the p-series converges
for every 1 < p <∞. To show this, note that

1

2p
+

1

3p
<

2

2p
,

1

4p
+

1

5p
+

1

6p
+

1

7p
<

4

4p
,

and so on, which implies that

2N−1∑
n=1

1

np
< 1 +

1

2p−1
+

1

4p−1
+

1

8p−1
+ · · ·+ 1

2(N−1)(p−1)
<

1

1− 21−p
.

Thus, the partial sums are bounded from above, so the series converges by Propo-
sition 4.6. An alternative proof of the convergence of the p-series for p > 1 and
divergence for 0 < p ≤ 1, using the integral test, is given in Example 12.44.
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4.5. * The Riemann ζ-function

Example 4.21 justifies the following definition.

Definition 4.22. The Riemann ζ-function is defined for 1 < s <∞ by

ζ(s) =

∞∑
n=1

1

ns

For instance, as stated in Example 4.20, we have ζ(2) = π2/6. In fact, Euler
(1755) discovered a general formula for the value ζ(2n) of the ζ-function at even
natural numbers,

ζ(2n) = (−1)n+1 (2π)2nB2n

2(2n)!
, n = 1, 2, 3, . . . ,

where the coefficients B2n are the Bernoulli numbers (see Example 10.19). In
particular,

ζ(4) =
π4

90
, ζ(6) =

π6

945
, ζ(8) =

π8

9450
, ζ(10) =

π10

93555
.

On the other hand, the values of the ζ-function at odd natural numbers are harder
to study. For instance,

ζ(3) =

∞∑
n=1

1

n3
= 1.2020569 . . .

is called Apéry’s constant. It was proved to be irrational by Apéry (1979) but a
simple explicit expression for ζ(3) is not known (and likely doesn’t exist).

The Riemann ζ-function is intimately connected with number theory and the
distribution of primes. Every positive integer n has a unique factorization

n = pα1
1 pα2

2 . . . pαk

k ,

where the pj are primes and the exponents αj are positive integers. Using the
binomial expansion in Example 4.2, we have(

1− 1

ps

)−1
= 1 +

1

ps
+

1

p2s
+

1

p3s
+

1

p4s
+ . . . .

By expanding the products and rearranging the resulting sums, one can see that

ζ(s) =
∏
p

(
1− 1

ps

)−1
,

where the product is taken over all primes p, since every possible prime factorization
of a positive integer appears exactly once in the sum on the right-hand side. The
infinite product here is defined as a limit of finite products,∏

p

(
1− 1

ps

)−1
= lim
N→∞

∏
p≤N

(
1− 1

ps

)−1
.
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Using complex analysis, one can show that the ζ-function may be extended
in a unique way to an analytic (i.e., differentiable) function of a complex variable
s = σ + it ∈ C

ζ : C \ {1} → C,
where σ = <s is the real part of s and t = =s is the imaginary part. The ζ-
function has a singularity at s = 1, called a simple pole, where it goes to infinity like
1/(1−s), and is equal to zero at the negative even integers s = −2,−4, . . . ,−2n, . . . .
These zeros are called the trivial zeros of the ζ-function. Riemann (1859) made the
following conjecture.

Hypothesis 4.23 (Riemann hypothesis). Except for the trivial zeros, the only
zeros of the Riemann ζ-function occur on the line <s = 1/2.

If true, the Riemann hypothesis has significant consequences for the distribution
of primes (and many other things); roughly speaking, it implies that the prime
numbers are “randomly distributed” among the natural numbers (with density
1/ log n near a large integer n ∈ N). Despite enormous efforts, this conjecture has
neither been proved nor disproved, and it remains one of the most significant open
problems in mathematics (perhaps the most significant open problem).

4.6. The ratio and root tests

In this section, we describe the ratio and root tests, which provide explicit sufficient
conditions for the absolute convergence of a series that can be compared with a
geometric series. These tests are particularly useful in studying power series, but
they aren’t effective in determining the convergence or divergence of series whose
terms do not approach zero at a geometric rate.

Theorem 4.24 (Ratio test). Suppose that (an) is a sequence of nonzero real num-
bers such that the limit

r = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists or diverges to infinity. Then the series

∞∑
n=1

an

converges absolutely if 0 ≤ r < 1 and diverges if 1 < r ≤ ∞.

Proof. If r < 1, choose s such that r < s < 1. Then there exists N ∈ N such that∣∣∣∣an+1

an

∣∣∣∣ < s for all n > N.

It follows that
|an| ≤Msn for all n > N

where M is a suitable constant. Therefore
∑
an converges absolutely by comparison

with the convergent geometric series
∑
Msn.

If r > 1, choose s such that r > s > 1. There exists N ∈ N such that∣∣∣∣an+1

an

∣∣∣∣ > s for all n > N,
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so that |an| ≥ Msn for all n > N and some M > 0. It follows that (an) does not
approach 0 as n→∞, so the series diverges. �

Example 4.25. Let a ∈ R, and consider the series
∞∑
n=1

nan = a+ 2a2 + 3a3 + . . . .

Then

lim
n→∞

∣∣∣∣ (n+ 1)an+1

nan

∣∣∣∣ = |a| lim
n→∞

(
1 +

1

n

)
= |a|.

By the ratio test, the series converges if |a| < 1 and diverges if |a| > 1; the series
also diverges if |a| = 1. The convergence of the series for |a| < 1 is explained by
the fact that the geometric decay of the factor an is more rapid than the algebraic
growth of the coefficient n.

Example 4.26. Let p > 0 and consider the p-series
∞∑
n=1

1

np
.

Then

lim
n→∞

[
1/(n+ 1)p

1/np

]
= lim
n→∞

[
1

(1 + 1/n)p

]
= 1,

so the ratio test is inconclusive. In this case, the series diverges if 0 < p ≤ 1 and
converges if p > 1, which shows that either possibility may occur when the limit in
the ratio test is 1.

The root test provides a criterion for convergence of a series that is closely re-
lated to the ratio test, but it doesn’t require that the limit of the ratios of successive
terms exists.

Theorem 4.27 (Root test). Suppose that (an) is a sequence of real numbers and
let

r = lim sup
n→∞

|an|1/n .

Then the series
∞∑
n=1

an

converges absolutely if 0 ≤ r < 1 and diverges if 1 < r ≤ ∞.

Proof. First suppose 0 ≤ r < 1. If 0 < r < 1, choose s such that r < s < 1, and
let

t =
r

s
, r < t < 1.

If r = 0, choose any 0 < t < 1. Since t > lim sup |an|1/n, Theorem 3.41 implies
that there exists N ∈ N such that

|an|1/n < t for all n > N.

Therefore |an| < tn for all n > N , where t < 1, so it follows that the series converges
by comparison with the convergent geometric series

∑
tn.
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Next suppose 1 < r ≤ ∞. If 1 < r <∞, choose s such that 1 < s < r, and let

t =
r

s
, 1 < t < r.

If r = ∞, choose any 1 < t < ∞. Since t < lim sup |an|1/n, Theorem 3.41 implies
that

|an|1/n > t for infinitely many n ∈ N.
Therefore |an| > tn for infinitely many n ∈ N, where t > 1, so (an) does not
approach zero as n→∞, and the series diverges. �

The root test may succeed where the ratio test fails.

Example 4.28. Consider the geometric series with ratio 1/2,
∞∑
n=1

an =
1

2
+

1

22
+

1

23
+

1

24
+

1

25
+ . . . , an =

1

2n
.

Then (of course) both the ratio and root test imply convergence since

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim sup
n→∞

|an|1/n =
1

2
< 1.

Now consider the series obtained by switching successive odd and even terms
∞∑
n=1

bn =
1

22
+

1

2
+

1

24
+

1

23
+

1

26
+ . . . , bn =

{
1/2n+1 if n is odd,

1/2n−1 if n is even

For this series, ∣∣∣∣bn+1

bn

∣∣∣∣ =

{
2 if n is odd,

1/8 if n is even,

and the ratio test doesn’t apply, since the required limit does not exist. (The series
still converges at a geometric rate, however, because the the decrease in the terms
by a factor of 1/8 for even n dominates the increase by a factor of 2 for odd n.) On
the other hand

lim sup
n→∞

|bn|1/n =
1

2
,

so the ratio test still works. In fact, as we discuss in Section 4.8, since the series is
absolutely convergent, every rearrangement of it converges to the same sum.

4.7. Alternating series

An alternating series is one in which successive terms have opposite signs. If the
terms in an alternating series have decreasing absolute values and converge to zero,
then the series converges however slowly its terms approach zero. This allows us to
prove the convergence of some series which aren’t absolutely convergent.

Example 4.29. The alternating harmonic series from Example 4.14 is
∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− . . . .

The behavior of its partial sums is shown in Figure 1, which illustrates the idea of
the convergence proof for alternating series.
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Figure 1. A plot of the first 40 partial sums Sn of the alternating harmonic

series in Example 4.14. The odd partial sums decrease and the even partial

sums increase to the sum of the series log 2 ≈ 0.6931, which is indicated by
the dashed line.

Theorem 4.30 (Alternating series). Suppose that (an) is a decreasing sequence
of nonnegative real numbers, meaning that 0 ≤ an+1 ≤ an, such that an → 0 as
n→∞. Then the alternating series

∞∑
n=1

(−1)n+1an = a1 − a2 + a3 − a4 + a5 − . . .

converges.

Proof. Let

Sn =

n∑
k=1

(−1)k+1ak

denote the nth partial sum. If n = 2m− 1 is odd, then

S2m−1 = S2m−3 − a2m−2 + a2m−1 ≤ S2m−3,

since (an) is decreasing, and

S2m−1 = (a1 − a2) + (a3 − a4) + · · ·+ (a2m−3 − a2m−2) + a2m−1 ≥ 0.

Thus, the sequence (S2m−1) of odd partial sums is decreasing and bounded from
below by 0, so S2m−1 ↓ S+ as m→∞ for some S+ ≥ 0.

Similarly, if n = 2m is even, then

S2m = S2m−2 + a2m−1 − a2m ≥ S2m−2,
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and
S2m = a1 − (a2 − a3)− (a4 − a5)− · · · − (a2m−1 − a2m) ≤ a1.

Thus, (S2m) is increasing and bounded from above by a1, so S2m ↑ S− ≤ a1 as
m→∞.

Finally, note that

lim
m→∞

(S2m−1 − S2m) = lim
m→∞

a2m = 0,

so S+ = S−, which implies that the series converges to their common value. �

The proof also shows that the sum S2m ≤ S ≤ S2n−1 is bounded from below
and above by all even and odd partial sums, respectively, and that the error |Sn−S|
is less than the first term an+1 in the series that is neglected.

Example 4.31. The alternating p-series
∞∑
n=1

(−1)n+1

np

converges for every p > 0. The convergence is absolute for p > 1 and conditional
for 0 < p ≤ 1.

4.8. Rearrangements

A rearrangement of a series is a series that consists of the same terms in a different
order. The convergence of rearranged series may initially appear to be unconnected
with absolute convergence, but absolutely convergent series are exactly those series
whose sums remain the same under every rearrangement of their terms. On the
other hand, a conditionally convergent series can be rearranged to give any sum we
please, or to diverge.

Example 4.32. A rearrangement of the alternating harmonic series in Exam-
ple 4.14 is

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ . . . ,

where we put two negative even terms between each of the positive odd terms. The
behavior of its partial sums is shown in Figure 2. As proved in Example 12.47,
this series converges to one-half of the sum of the alternating harmonic series. The
sum of the alternating harmonic series can change under rearrangement because it
is conditionally convergent.

Note also that both the positive and negative parts of the alternating harmonic
series diverge to infinity, since

1 +
1

3
+

1

5
+

1

7
+ . . . >

1

2
+

1

4
+

1

6
+

1

8
+ . . .

>
1

2

(
1 +

1

2
+

1

3
+

1

4
+ . . .

)
,

1

2
+

1

4
+

1

6
+

1

8
+ . . . =

1

2

(
1 +

1

2
+

1

3
+

1

4
+ . . .

)
,

and the harmonic series diverges. This is what allows us to change the sum by
rearranging the series.
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Figure 2. A plot of the first 40 partial sums Sn of the rearranged alternating

harmonic series in Example 4.32. The series converges to half the sum of the

alternating harmonic series, 1
2

log 2 ≈ 0.3466. Compare this picture with Fig-

ure 1.

The formal definition of a rearrangement is as follows.

Definition 4.33. A series
∞∑
m=1

bm

is a rearrangement of a series
∞∑
n=1

an

if there is a one-to-one, onto function f : N→ N such that bm = af(m).

If
∑
bm is a rearrangement of

∑
an with n = f(m), then

∑
an is a rearrange-

ment of
∑
bm, with m = f−1(n).

Theorem 4.34. If a series is absolutely convergent, then every rearrangement of
the series converges to the same sum.

Proof. First, suppose that
∞∑
n=1

an
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is a convergent series with an ≥ 0, and let

∞∑
m=1

bm, bm = af(m)

be a rearrangement.

Given ε > 0, choose N ∈ N such that

0 ≤
∞∑
k=1

ak −
N∑
k=1

ak < ε.

Since f : N→ N is one-to-one and onto, there exists M ∈ N such that

{1, 2, . . . , N} ⊂ f−1 ({1, 2, . . . ,M}) ,

meaning that all of the terms a1, a2,. . . , aN are included among the b1, b2,. . . , bM .
For example, we can take M = max{m ∈ N : 1 ≤ f(m) ≤ N}; this maximum is
well-defined since there are finitely many such m (in fact, N of them).

If m > M , then
N∑
k=1

ak ≤
m∑
j=1

bj ≤
∞∑
k=1

ak

since the bj ’s include all the ak’s in the left sum, all the bj ’s are included among
the ak’s in the right sum, and ak, bj ≥ 0. It follows that

0 ≤
∞∑
k=1

ak −
m∑
j=1

bj < ε,

for all m > M , which proves that

∞∑
j=1

bj =

∞∑
k=1

ak.

If
∑
an is a general absolutely convergent series, then from Proposition 4.17

the positive and negative parts of the series

∞∑
n=1

a+n ,

∞∑
n=1

a−n

converge. If
∑
bm is a rearrangement of

∑
an, then

∑
b+m and

∑
b−m are rearrange-

ments of
∑
a+n and

∑
a−n , respectively. It follows from what we’ve just proved that

they converge and

∞∑
m=1

b+m =

∞∑
n=1

a+n ,

∞∑
m=1

b−m =

∞∑
n=1

a−n .

Proposition 4.17 then implies that
∑
bm is absolutely convergent and

∞∑
m=1

bm =

∞∑
m=1

b+m −
∞∑
m=1

b−m =

∞∑
n=1

a+n −
∞∑
n=1

a−n =

∞∑
n=1

an,

which proves the result. �
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Figure 3. A plot of the first 40 partial sums Sn of the rearranged alternating

harmonic series described in Example 4.35, which converges to
√

2.

Conditionally convergent series behave completely differently from absolutely
convergent series under rearrangement. As Riemann observed, they can be rear-
ranged to give any sum we want, or to diverge. Before giving the proof, we illustrate
the idea with an example.

Example 4.35. Suppose we want to rearrange the alternating harmonic series

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . . .

so that its sum is
√

2 ≈ 1.4142. We choose positive terms until we get a partial sum
that is greater than

√
2, which gives 1 + 1/3 + 1/5; followed by negative terms until

we get a sum less than
√

2, which gives 1 + 1/3 + 1/5 − 1/2; followed by positive

terms until we get a sum greater than
√

2, which gives

1 +
1

3
+

1

5
− 1

2
+

1

7
+

1

9
+

1

11
+

1

13
;

followed by another negative term −1/4 to get a sum less than
√

2; and so on. The
first 40 partial sums of the resulting series are shown in Figure 3.

Theorem 4.36. If a series is conditionally convergent, then it has rearrangements
that converge to an arbitrary real number and rearrangements that diverge to ∞
or −∞.

Proof. Suppose that
∑
an is conditionally convergent. Since the series converges,

an → 0 as n → ∞. If both the positive part
∑
a+n and negative part

∑
a−n of the
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series converge, then the series converges absolutely; and if only one part diverges,
then the series diverges (to∞ if

∑
a+n diverges, or −∞ if

∑
a−n diverges). Therefore

both
∑
a+n and

∑
a−n diverge. This means that we can make sums of successive

positive or negative terms in the series as large as we wish.

Suppose S ∈ R. Starting from the beginning of the series, we choose successive
positive or zero terms in the series until their partial sum is greater than or equal
to S. Then we choose successive strictly negative terms, starting again from the
beginning of the series, until the partial sum of all the terms is strictly less than
S. After that, we choose successive positive or zero terms until the partial sum is
greater than or equal S, followed by negative terms until the partial sum is strictly
less than S, and so on. The partial sums are greater than S by at most the value
of the last positive term retained, and are less than S by at most the value of the
last negative term retained. Since an → 0 as n→∞, it follows that the rearranged
series converges to S.

A similar argument shows that we can rearrange a conditional convergent series
to diverge to ∞ or −∞, and that we can rearrange the series so that it diverges in
a finite or infinite oscillatory fashion. �

The previous results indicate that conditionally convergent series behave in
many ways more like divergent series than absolutely convergent series.

4.9. The Cauchy product

In this section, we prove a result about the product of absolutely convergent series
that is useful in multiplying power series. It is convenient to begin numbering the
terms of the series at n = 0.

Definition 4.37. The Cauchy product of the series
∞∑
n=0

an,

∞∑
n=0

bn

is the series
∞∑
n=0

(
n∑
k=0

akbn−k

)
.

The Cauchy product arises formally by term-by-term multiplication and re-
arrangement:

(a0 + a1 + a2 + a3 + . . . ) (b0 + b1 + b2 + b3 + . . . )

= a0b0 + a0b1 + a0b2 + a0b3 + · · ·+ a1b0 + a1b1 + a1b2 + . . .

+ a2b0 + a2b1 + · · ·+ a3b0 + . . .

= a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0)

+ (a0b3 + a1b2 + a2b1 + a3b0) + . . . .

In general, writing m = n− k, we have formally that( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
=

∞∑
k=0

∞∑
m=0

akbm =

∞∑
n=0

n∑
k=0

akbn−k.
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There are no convergence issues about the individual terms in the Cauchy product,
since

∑n
k=0 akbn−k is a finite sum.

Theorem 4.38 (Cauchy product). If the series

∞∑
n=0

an,

∞∑
n=0

bn

are absolutely convergent, then the Cauchy product is absolutely convergent and

∞∑
n=0

(
n∑
k=0

akbn−k

)
=

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
.

Proof. For every N ∈ N, we have

N∑
n=0

∣∣∣∣∣
n∑
k=0

akbn−k

∣∣∣∣∣ ≤
N∑
n=0

(
n∑
k=0

|ak||bn−k|

)

≤

(
N∑
k=0

|ak|

)(
N∑
m=0

|bm|

)

≤

( ∞∑
n=0

|an|

)( ∞∑
n=0

|bn|

)
.

Thus, the Cauchy product is absolutely convergent, since the partial sums of its
absolute values are bounded from above.

Since the series for the Cauchy product is absolutely convergent, any rearrange-
ment of it converges to the same sum. In particular, the subsequence of partial sums
given by (

N∑
n=0

an

)(
N∑
n=0

bn

)
=

N∑
n=0

N∑
m=0

anbm

corresponds to a rearrangement of the Cauchy product, so

∞∑
n=0

(
n∑
k=0

akbn−k

)
= lim
N→∞

(
N∑
n=0

an

)(
N∑
n=0

bn

)
=

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
.

�

In fact, as we discuss in the next section, since the series of term-by-term
products of absolutely convergent series converges absolutely, every rearrangement
of the product series — not just the one in the Cauchy product — converges to the
product of the sums.

4.10. * Double series

A double series is a series of the form
∞∑

m,n=1

amn,
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where the terms amn are indexed by a pair of natural numbers m,n ∈ R. More
formally, the terms are defined by a function f : N×N→ R where amn = f(m,n).
In this section, we consider sums of double series; this material is not used later on.

There are many different ways to define the sum of a double series since, unlike
the index set N of a series, the index set N × N of a double series does not come
with a natural linear order. Our main interest here is in giving a definition of the
sum of a double series that does not depend on the order of its terms. As for series,
this unordered sum exists if and only if the double series is absolutely convergent.

If F ⊂ N× N is a finite subset of pairs of natural numbers, then we denote by∑
F

amn =
∑

(m,n)∈F

amn

the partial sum of all terms amn whose indices (m,n) belong to F .

Definition 4.39. The unordered sum of nonnegative real numbers amn ≥ 0 is∑
N×N

amn = sup
F∈F

{∑
F

amn

}
where the supremum is taken over the collection F of all finite subsets F ⊂ N×N.
The unordered sum converges if this supremum is finite and diverges to ∞ if this
supremum is ∞.

In other words, the unordered sum of a double series of nonnegative terms is
the supremum of the set of all finite partial sums of the series. Note that this
supremum exists if and only if the finite partial sums of the series are bounded
from above.

Example 4.40. The unordered sum∑
(m,n)∈N×N

1

(m+ n)p
=

1

(1 + 1)p
+

1

(1 + 2)p
+

1

(2 + 1)p
+

1

(1 + 3)p
+

1

(2 + 2)p
+ . . .

converges if p > 2 and diverges if p ≤ 2. To see this, first note that if

T = {(m,n) ∈ N× N : 2 ≤ m+ n ≤ N}

is a “triangular” set of indices, then∑
T

1

(m+ n)p
=

N−1∑
m=1

N−m∑
n=1

1

(m+ n)p

=

N∑
k=2

k∑
n=1

1

kp

=

N∑
k=2

1

kp−1
.

It follows that ∑
N×N

1

(m+ n)p
≥

N∑
k=2

1

kp−1
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for every N ∈ N, so the double series diverges if p ≤ 2 since the (p − 1)-series
diverges. Moreover, if p > 2 and F is a finite subset of N × N, then there exists a
triangular set T such that F ⊂ T , so that∑

F

1

(m+ n)p
≤
∑
T

1

(m+ n)p
<

∞∑
k=2

1

kp−1
.

It follows that the unordered sum converges if p > 2, with∑
N×N

1

(m+ n)p
=

∞∑
k=2

1

kp−1
.

Note that this double p-series converges only if its terms approach zero at a faster
rate than the terms in a single p-series (of degree greater than 2 in (m,n) rather
than degree greater than 1 in n).

We define a general unordered sum of real numbers by summing its positive and
negative terms separately. (Recall the notation in Definition 4.15 for the positive
and negative parts of a real number.)

Definition 4.41. The unordered sum of a double series of real numbers is∑
N×N

amn =
∑
N×N

a+mn −
∑
N×N

a−mn

where amn = a+mn− a−mn is the decomposition of amn into its positive and negative
parts. The unordered sum converges if both

∑
a+mn and

∑
a−mn are finite; diverges

to ∞ if
∑
a+mn = ∞ and

∑
a−mn is finite; diverges to −∞ if

∑
a+mn is finite and∑

a−mn =∞; and is undefined if both
∑
a+mn and

∑
a−mn diverge to ∞.

This definition does not require us to order the index set N×N in any way; in
fact, the same definition applies to any series of real numbers∑

i∈I
ai

whose terms are indexed by an arbitrary set I. A sum over a set of indices will
always denote an unordered sum.

Definition 4.42. A double series
∞∑

m,n=1

amn

of real numbers converges absolutely if the unordered sum∑
N×N
|amn| <∞

converges.

The following result is a straightforward consequence of the definitions and the
completeness of R.
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Proposition 4.43. An unordered sum
∑
amn of real numbers converges if and

only if it converges absolutely, and in that case∑
N×N
|amn| =

∑
N×N

a+mn +
∑
N×N

a−mn.

Proof. First, suppose that the unordered sum∑
N×N

amn

converges absolutely. If F ⊂ N× N is any finite subset, then∑
F

a±mn ≤
∑
F

|amn| ≤
∑
N×N
|amn|.

It follows that the finite partial sums of the positive and negative terms of the series
are bounded from above, so the unordered sum converges.

Conversely, suppose that the unordered sum converges. If F ⊂ N × N is any
finite subset, then∑

F

|amn| =
∑
F

a+mn +
∑
F

a−mn ≤
∑
N×N

a+mn +
∑
N×N

a−mn.

It follows that the finite partial sums of the absolute values of the terms in the series
are bounded from above, so the unordered sum converges absolutely. Furthermore,∑

N×N
|amn| ≤

∑
N×N

a+mn +
∑
N×N

a−mn.

To prove the inequality in the other direction, let ε > 0. There exist finite sets
F+, F− ⊂ N× N such that∑

F+

a+mn >
∑
N×N

a+mn −
ε

2
,

∑
F−

a−mn >
∑
N×N

a−mn −
ε

2
.

Let F = F+ ∪ F−. Then, since a±mn ≥ 0, we have∑
F

|amn| =
∑
F

a+mn +
∑
F

a−mn

≥
∑
F+

a+mn +
∑
F−

a−mn

>
∑
N×N

a+mn +
∑
N×N

a−mn − ε.

Since ε > 0 is arbitrary, it follows that∑
N×N
|amn| ≥

∑
N×N

a+mn +
∑
N×N

a−mn,

which completes the proof. �

Next, we define rearrangements of a double series into single series and show
that every rearrangement of a convergent unordered sum converges to the same
sum.
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Definition 4.44. A rearrangement of a double series

∞∑
m,n=1

amn

is a series of the form
∞∑
k=1

bk, bk = aσ(k)

where σ : N→ N× N is a one-to-one, onto map.

Example 4.45. The rearrangement corresponding to the map f : N → N × N
defined in the proof of Proposition 1.45 is given by

∞∑
m,n=1

amn = a11 + a21 + a12 + a31 + a22 + a13 + a41 + a32 + a23 + a14 + . . . .

Theorem 4.46. If the unordered sum of a double series of real numbers converges,
then every rearrangement of the double series into a single series converges to the
unordered sum.

Proof. Suppose that the unordered sum
∑
amn converges with∑

N×N
a+mn = S+,

∑
N×N

a−mn = S−,

and let
∞∑
k=1

bk

be a rearrangement of the double series corresponding to a map σ : N → N × N.
For k ∈ N, let

Fk = {(m,n) ∈ N× N : (m,n) = σ(j) for some 1 ≤ j ≤ k} ,

so that
k∑
j=1

bj =
∑
Fk

amn =
∑
Fk

a+mn −
∑
Fk

a−mn.

Given ε > 0, choose finite sets

F+, F− ⊂ N× N

such that

S+ − ε <
∑
F+

a+mn ≤ S+, S− − ε <
∑
F−

a−mn ≤ S−,

and define N ∈ N by

N = max {j ∈ N : σ(j) ∈ F+ ∪ F−} .

If k ≥ N , then Fk ⊃ F+ ∪ F− and, since a±mn ≥ 0,∑
F+

a+mn ≤
∑
Fk

a+mn ≤ S+,
∑
F−

a−mn ≤
∑
Fk

a−mn ≤ S−.
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It follows that

S+ − ε <
∑
Fk

a+mn ≤ S+, S− − ε <
∑
Fk

a−mn ≤ S−,

which implies that ∣∣∣∣∣∣
k∑
j=1

bj − (S+ − S−)

∣∣∣∣∣∣ < ε.

This inequality proves that the rearrangement
∑
bk converges to the unordered

sum S+ − S− of the double series. �

The rearrangement of a double series into a single series is one natural way to
interpret a double series in terms of single series. Another way is to use iterated
sums of single series.

Given a double series
∑
amn, one can define two iterated sums, obtained by

summing first over one index followed by the other:

∞∑
m=1

( ∞∑
n=1

amn

)
= lim
M→∞

M∑
m=1

(
lim
N→∞

N∑
n=1

amn

)
;

∞∑
n=1

( ∞∑
m=1

amn

)
= lim
N→∞

N∑
n=1

(
lim
M→∞

M∑
m=1

amn

)
.

As the following example shows, these iterated sums may not equal, even if both
of them converge.

Example 4.47. Define amn by

amn =


1 if n = m+ 1

−1 if m = n+ 1

0 otherwise

Then, by writing out the terms amn in a table, one can see that

∞∑
n=1

amn =

{
1 if m = 1

0 otherwise
,

∞∑
m=1

amn =

{
−1 if n = 1

0 otherwise
,

so that
∞∑
m=1

( ∞∑
n=1

amn

)
= 1,

∞∑
n=1

( ∞∑
m=1

amn

)
= −1.

Note that for this series ∑
N×N
|amn| =∞,

so it is not absolutely convergent. Furthermore, both of the sums∑
N×N

a+mn,
∑
N×N

a−mn

diverge to ∞, so the unordered sum is not well-defined.
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The following basic result, which is a special case of Fubini’s theorem, guaran-
tees that both of the iterated sums of an absolutely convergent double series exist
and are equal to the unordered sum. It also gives a criterion for the absolute con-
vergence of a double series in terms of the convergence of its iterated sums. The
key point of the proof is that a double sum over a “rectangular” set of indices is
equal to an iterated sum. We can then estimate sums over arbitrary finite subsets
of indices in terms of sums over rectangles.

Theorem 4.48 (Fubini for double series). A double series of real numbers
∑
amn

converges absolutely if and only if either one of the iterated series

∞∑
m=1

( ∞∑
n=1

|amn|

)
,

∞∑
n=1

( ∞∑
m=1

|amn|

)
converges. In that case, both iterated series converge to the unordered sum of the
double series: ∑

N×N
amn =

∞∑
m=1

( ∞∑
n=1

amn

)
=

∞∑
n=1

( ∞∑
m=1

amn

)
.

Proof. First suppose that one of the iterated sums of the absolute values exists.
Without loss of generality, we suppose that

∞∑
m=1

( ∞∑
n=1

|amn|

)
<∞.

Let F ⊂ N × N be a finite subset. Choose M,N ∈ N such that m ≤ M and
n ≤ N for all (m,n) ∈ F . Then F ⊂ R where the rectangle R is given by
R = {1, 2, . . . ,M} × {1, 2, . . . , N}, so that

∑
F

|amn| ≤
∑
R

|amn| =
M∑
m=1

(
N∑
n=1

|amn|

)
≤
∞∑
m=1

( ∞∑
n=1

|amn|

)
.

Thus, the finite partial sums of
∑
|amn| are bounded from above, so the unordered

sum converges absolutely.

Conversely, suppose that the unordered sum converges absolutely. Then, using
Proposition 2.25 and the fact that the supremum of partial sums of non-negative
terms over rectangles in N×N is equal to the supremum over all finite subsets, we
get that

∞∑
m=1

( ∞∑
n=1

|amn|

)
= sup
M∈N

{
M∑
m=1

sup
N∈N

{
N∑
n=1

|amn|

}}

= sup
(M,N)∈N×N

{
M∑
m=1

N∑
n=1

|amn|

}
=
∑
N×N
|amn|.
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Thus, the iterated sums converge to the unordered sum. Moreover, we have simi-
larly that

∞∑
m=1

( ∞∑
n=1

a+mn

)
=
∑
N×N

a+ij ,

∞∑
m=1

( ∞∑
n=1

a−mn

)
=
∑
N×N

a−ij ,

which implies that

∞∑
m=1

( ∞∑
n=1

amn

)
=

∞∑
m=1

( ∞∑
n=1

a+mn

)
−
∞∑
m=1

( ∞∑
n=1

a−mn

)
=
∑
N×N

amn.

�

The preceding results show that the sum of an absolutely convergent double
series is unambiguous; unordered sums, sums of rearrangements into single series,
and iterated sums all converge to the same value. On the other hand, the sum
of a conditionally convergent double series depends on how it is defined, e.g., on
how one chooses to rearrange the double series into a single series. We conclude by
describing one other way to define double sums.

Example 4.49. A natural way to generalize the sum of a single series to a double
series, going back to Cauchy (1821) and Pringsheim (1897), is to say that

∞∑
m,n=1

amn = S

if for every ε > 0 there exists M,N ∈ N such that∣∣∣∣∣∣
m∑
i=1

n∑
j=1

aij − S

∣∣∣∣∣∣ < ε

for all m > M and n > N . We write this definition briefly as

∞∑
m,n=1

amn = lim
M,N→∞

[
M∑
m=1

N∑
n=1

amn

]
.

That is, we sum over larger and larger “rectangles” of indices in the N× N-plane.

An absolutely convergent series converges in this sense to the same sum, but
some conditionally convergent series also converge. For example, using this defini-
tion of the sum, we have

∞∑
m,n=1

(−1)m+n

mn
= lim
M,N→∞

[
M∑
m=1

N∑
n=1

(−1)m+n

mn

]

= lim
M→∞

[
M∑
m=1

(−1)m

m

]
lim
N→∞

[
N∑
n=1

(−1)n

n

]

=

[ ∞∑
n=1

(−1)n

n

]2
= (log 2)

2
,
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but the series is not absolutely convergent, since the sums of both its positive and
negative terms diverge to ∞.

This definition of a sum is not, however, as easy to use as the unordered sum of
an absolutely convergent series. For example, it does not satisfy Fubini’s theorem
(although one can show that if the sum of a double series exists in this sense and
the iterated sums also exist, then they are equal [16]).

4.11. * The irrationality of e

In this section, we use series to prove that e is an irrational number. In Proposi-
tion 3.32, we defined e ≈ 2.71828 . . . as the limit

e = lim
n→∞

(
1 +

1

n

)n
.

We first obtain an alternative expression for e as the sum of a series.

Proposition 4.50.

e =

∞∑
n=0

1

n!
.

Proof. Using the binomial theorem, as in the proof of Proposition 3.32, we find
that (

1 +
1

n

)n
= 2 +

1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·+ 1

k!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− k − 1

n

)
+ · · ·+ 1

n!

(
1− 1

n

)(
1− 2

n

)
. . .

2

n
· 1

n

< 2 +
1

2!
+

1

3!
+

1

4!
+ · · ·+ 1

n!
.

Taking the limit of this inequality as n→∞, we get that

e ≤
∞∑
n=0

1

n!
.

To get the reverse inequality, we observe that for every 2 ≤ k ≤ n,(
1 +

1

n

)n
≥ 2 +

1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·+ 1

k!

(
1− 1

n

)(
1− 2

n

)
. . .

(
1− k − 1

n

)
.

Fixing k and taking the limit as n→∞, we get that

e ≥
k∑
j=0

1

j!
.
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Then, taking the limit as k →∞, we find that

e ≥
∞∑
n=0

1

n!
,

which proves the result. �

This series for e is very rapidly convergent. The next proposition gives an
explicit error estimate.

Proposition 4.51. For every n ∈ N,

0 < e−
n∑
k=0

1

k!
<

1

n · n!
.

Proof. The lower bound is obvious. For the upper bound, we estimate the tail of
the series by a geometric series:

e−
n∑
k=0

1

k!
=

∞∑
k=n+1

1

k!

=
1

n!

(
1

n+ 1
+

1

(n+ 1)(n+ 2)
+ · · ·+ 1

(n+ 1)(n+ 2) . . . (n+ k)
+ . . .

)
<

1

n!

(
1

n+ 1
+

1

(n+ 1)2
+ · · ·+ 1

(n+ 1)k
+ . . .

)
<

1

n!
· 1

n
.

�

Theorem 4.52. The number e is irrational.

Proof. Suppose for contradiction that e = p/q for some p, q ∈ N. From Proposi-
tion 4.51,

0 <
p

q
−

n∑
k=0

1

k!
<

1

n · n!

for every n ∈ N. Multiplying this inequality by n!, we get

0 <
p · n!

q
−

n∑
k=0

n!

k!
<

1

n
.

The middle term is an integer if n ≥ q, which is impossible since it lies strictly
between 0 and 1/n. �

A real number is said to be algebraic if it is a root of a polynomial with integer
coefficients, otherwise it is transcendental. For example, every rational number
x = p/q, where p, q ∈ Z and q 6= 0, is algebraic, since it is the solution of qx−p = 0;

and
√

2 is an irrational algebraic number, since it is a solution of x2 − 2 = 0. It’s
possible to prove that e is not only irrational but transcendental, but the proof is

harder. Two other explicit examples of transcendental numbers are π and 2
√
2.
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There is a long history of the study of irrational and transcendental numbers.
Euler (1737) proved the irrationality of e, and Lambert (1761) proved the irrational-
ity of π. The first proof of the existence of a transcendental number was given by
Liouville (1844), who showed that

∞∑
n=1

1

10n!
= 0.11000100000000000000000100 . . .

is transcendental. The transcendence of e was proved by Hermite (1873), the tran-

scendence of π by Lindemann (1882), and the transcendence of 2
√
2 independently

by Gelfond and Schneider (1934).

Cantor (1878) observed that the set of algebraic numbers is countably infinite,
since there are countable many polynomials with integer coefficients, each such
polynomial has finitely many roots, and the countable union of countable sets is
countable. This argument proved the existence of uncountably many transcen-
dental numbers without exhibiting any explicit examples, which was a remarkable
result given the difficulties mathematicians had encountered (and still encounter)
in proving that specific numbers are transcendental.

There remain many unsolved problems in this area. For example, it’s not known
if the Euler constant

γ = lim
n→∞

(
n∑
k=1

1

k
− log n

)
from Example 4.11 is rational or irrational.
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